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Two principal and ﬁélafed topics are considered: (1) adaptive mesh
refinement for finite element computations, and (2) mesh refinement specifi-
cally for nonlinear flow problems. In the first instance the residual and
#sociated trace theorems for variational p;oblems are introduced to relate
the solution e;;ér to a computable residual. This provides a theoretical
basis for a mesh refinement strategy. = f _

A corresponding adaptive refinement procedure that automatically and
selectively refines the mesh is formulated and imp]emehted fqr a class of
nonlinear transport problems in chemical engineering. In particular, a non-
linear problem with a boundary-layer solution is investigated. The strategy
of interweaving Newton solution and mesh refinement proves particularly ef-
ficient.

Two-dimensional compressible and transonic flows are next examined.
Mesh refinement of subregions of the flow field is applied to yield high
solution near a singularity for both the linear and nonlinear flows. Re-
finemenf and Newton iteration are combine&; together with Mach number para-
meterization, to determine an efficient and accurate solution algorithm.

Similar points for nonlienar viscous problems are also reviewed.

Invited lecture presented at FENOMECH ‘78 (Finite Elements and Nonlinear
Mechanics), Stuttgart, and to appear in the conference.proceedings,
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ADAPTIVE REFINEMENT AND NONLINEAR FLUID PROBLEMS

Texas Institute for Computational Mechanics
FE - University of Texas at Austin, U.S.A.

1. Introduction

In approximating the solution of boundary-value problems by finite
element methods, we are continually confronted with the problem of deciding
on a mesh, assessing the quality of the solution obtained with that mesh,
and perhaps iteratively adjusting and enriching the mesh. As the solution

and its derivatives may vary markedly over the domain, nonuniform meshes

are warranted in the interests of computational efficiency. This is es-
pecially true of nonlinear problems where solutions exhibit layer or singu-
lar behavior.

Of course, this refinement problem applies quite generally to discrete
methods for boundary-value problems. In the present article we shall confine
the choice of applications to flow problems. Fluid mechanics has long been

a rich source of problems in applied mathematics. Many classical methods

SR A

of analysis, such as analytic function theory, have their origins and motiva-

tion in fluid mechanics. Problems with singularities, interior layers, boun-
dary layers and nonlinearities, where meshes are important, are commonplace.
This is true of the entire gamut of viscous, compressible, rotational and
other flows and also of transport problems which are included here.

The focus of this article is the underlying mathematical analysis, fi-
nite element technique, algorithms and implementation of mesh refinement in
this context. Special points of interest concerning refinement in layers
and near singularities , and solution strategies, are developed for representa-

tive steady flow problems. Throughout, important points are demonstrated using

e
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select problems drawn primarily from oncoing research studies of this tonic. ¥
Similar investiqgations have also been carried out for nonlinear problems in .
" solid mechanics and work in both areas is continuing. “here approoriate,

‘other research activities related to this topic are also indicated.

2. Refinement and Residuals

In many engineering applications one is able to predict those subregions
where the solution is changing markedly and use a finer mesh there. For in-
stance, the form of the loading or boundary data and shape of the domain
may indicate where the mesh needs to be fine. A preliminary computation on
a coarse uniform mesh may also be useful. Yet these actions only alleviate

the situation and do not resolve the main problem - the degree of local sub-

division is still unknown. 13
Ideally, we require an algorithm which selectively refines the mesh in
appropriate subregions of the domain. This implies that we have some cri-

terion for automatically assessing the quality of the approximate solution

on intermediate finite element meshes. It is easy to devise ad hoec princi-
ples for refining the mesh. Monitoring the changes in local solution benha-
vior between successive meshes and extrapolating to the next mesh is perhaps

the simplest strategy and will often work reasonably well. We also note

that one can readily concoct pathological examples such as highly oscillatory
functions that will defy any refinement procedure (Try u = % sin ex, !
0 <e<<1). i

A criterion which has a more rigorous foundation in the approximate ;
method itself is more desirable. Finite element methods are often based on . !
energy principles: the energy functional is minimized for the exact solution,

and the approximate solution minimizes the same functional over a finite
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dimensional subspace S(M), the class of finite element approximations on a given
mesh M . Refining the mesh produces a broader class of functions and a

lower value to the approximate global energy. This suggests that computation

of the energy for successive meshes will indicate the global quality of the
solution and meshes. Perhaps one can extend this argument to the local ac-
curacy of the energy contribution from individual elements or groups of ele-
ments as they are refined.

What may we infer regarding those problems where a classical energy
principle is not available? The weak variational statement and generalized
solution constitute an equivalent integral formulation of a boundary-value
problem. The classical minimization principles are then included as a spe-

cial category. In turn, we recognize that the variational problem can be

interpreted as a particular form of the method of weighted residuals. We
now appeal to this characterization to establish a suitable refinement cri-
terion. For a given approximation, the residual represents the amount by
which the differential equation fails to be satisfied. An exact classical
solution yields residual R = 0. The variational problem is constructed from
a duality pairing between the residual R(u) and test functions v .

The various approximation methods require that the residual be close to
zero, in some sense. That is, the projection of the residual in the test
space is zero. For example: in collocation the test functions are delta
functions and the residual is forced to be zero at specific points; in
Galerkin methods the projection of the residual in the approximation space

or a subspace is zero - in an appropriate norm, a point we shall shortly

develop. This leads us to explore the use of the residual as an indication of

solution accuracy globally in the domain and perhaps even locally. Except for

very simple bases, the residual will usually be non-zero and well defined on an

element and the norms of the residual easily




calculated there. For example, we could write for element ne the usual L2 norm

iRl = { [ # cm}" M)

Qe

Then a refinement scheme might be introduced that refines those elements Q
where || Rl[ne per unit volume is large. The simplest case, a piecewise linear ]
element draws our attention to a difficulty here. The second order deri-

vatives u" will not contribute to the residual in the element interior but

rather as boundary terms (jumps) at the element interfaces. zihese should be a
included in the residual evaluation of eauation (1).

The foregoing discussion motivates a residual analysis to provide the )
desired refinement criterion. In principle, we seek global and local error
bounds for the solution in terms of computable element residuals. We shall
develop this basic analysis for the standard two-point problem. The trace
theorems allow us to employ the same residual analysis in higher dimensions
(1.

Following this theoretical analysis, residuals are employed in adaptive
refinement and related procedures. A particular point we shall examine is that .
of interweaving adaptive mesh refinement with nonlinear solution iteration. Numeri-
cal experiments are conducted to confirm that this is computationally very effective. .

The particular examples described concern nonlinear heat and mass transport with a
boundary layer solution and compressible flow problems.
3. One-Dimensional Analysis j

The one-dimensional problem has a very special connectivity - adjacent
g]ements meet at their end nodes. Since we are considering mesh refinement o
strategies here, this implies that refinement by multiple "splittings" of
elements is relatively straightforward. New nodal points are introduced and 9

the continuity and differentiability of the approximation (CO.C].... functions)
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are readily maintained.

We first summarize some fundamental properties of the residual for
linear two-point problems. The details of the proofs are described else-

where [2-4]. Consider the standard linear problem,
-(p(x)u*)* + a(x)u = f(x) in Q= (0,1) (2)

with u(0) = u(1) = 0.
A generalized (weak) solution to equation (2) can be determined among
admissible functions u(x) € HL(Q) by requiring that

1 1 1

Ipu'v' dx+Jquv dx - J fv dx
0 0 0

0 (3)

for all v(x) € HA(Q).

Let L denote the linear differential operator in equation (2). Then,
for an approximate solution U(x) € H}J(Q) the residual R(x) = LU - f is de-
fined in a distributional sense by equation (3). Since Lu = f and LU =R + f,

then L(U - u) = Ror Le = Rwhere ¢ = U - u is the solution error. Now as u

and U are in Hg), so is € , and R 1is in the dual space (H(]))' =H! . From
Hilbert Space Theory, the induced norn in TRLEES
IRl o = sup ] | <Rw 2 | (4)
wEH lwlly g
w# 0

Since Le = R with Le = -(pe')' + ge , then from (3) we have on setting

v = ¢ and simplifying

| EII]’Q < Cj R“q’g (5)




where C 1is a constant.

This basic inequality forms the starting point of our residual analysis.
The H']-norm is not readily computed, so we seek to replace the bound by an
expression involving computable element residuals. To evaluate || Rl »
we return to the definition of equation (4) and examine the duality pairing.
On a partition of n elements of Co-Lagrange type,

CRWwDY = r_z‘ J (pu'w' + quw - fw)dx (6)

i=1
9

Integrate by parts on the entire domain as a union of elements to obtain

n
{RWD = ,X] J {-(pu')" + qu - flw dx + J[ (pu'w)' dXJ (7)
'|=

Qi Q‘i
Taking absolute values and applying the Cauchy-Schwarz inequality to each

integral, we obtain

n
| < Rw ) | p 1_):1 {l RHO’Qi "w“() o h;% “PU'(X,H]) % pu'(xi)]H W ”] o)
= Ve i

(8)
Since [[wlly < l[wlly »

n 5
I < R,w) ‘ o) z {“ R“O ol + hrﬁlpul(xi.ﬂ) > pul(xi)l}” w ”] Q
i=] i gz (9)

From the Schwarz and Holder inequalities for finite sums,

R t -li ' ' Z%n 2 .
| <RWD | < 1.Z]{II Rllo’ni +hi (lput(x49) = pu'(x;) )} (121“ WII],Qi)

(10)

We define the specific element residual as

i




|
|

IR Wy = Rl g WIpu () = pu (eI ()

A o b b o

so that

A
Ve MRIE Y Hwily g (2)
i=1

Using this in equations (4.4), .

i n 2 L
: IRy < (ig]mami) = IRl (13)

and inequality (4.9) is replaced by the global residual bound §

e lly g < ClIRIg (14)

s e e S S O MBS < e

! The element contribution to |||R|||Q may be computed, within a constant C, :

from equation (13). Since C is independent of h; and w , the inequality
(14) is a practical bound that can be utilized directly in our refinement
criterion. As ”|R|”1 is reduced by refinement, HIRIHS, will also decrease

as will the global error |l e[y -

To obtain an effective local refinement criterion we need a local bound
on an element of the same form as inequality (14). Consider a subsidiary
| problem posed on an element and with nonhomogeneous boundary data (approxima-
| tions to the solution values) at the element end nodes. By similar arguments

i to the above we obtain the local error bound

Il el < ClliRfllg + il (15)
1,9, - 2 1,9,

i » where n arises from the nonhomogeneous data and satisfies Ln = 0 in Qe . #

n = € at the end nodes of an element. Using the trace theorems and maximum




principles, || ”lll q is negligible for h = max hy sufficientls small and
*"e i
Qe not near the boundary of Q . Hence, inequality (14) provides the desired

local bound.

4. Algorithm

This residual analysis establishes a theoretical basis for developing
an adaptive refinement strategy for two-point problems. We now utilize this
residual criterion in a statistical procedure in which subregions are located
and refined automatically as part of the algorithm. The statistical approach
is quite robust as we demonstrate in numerical experiments.

Consider an initial mesh MO(Q). A finite element approximation U(x) is
computed on MO(Q) and the element residuals computed according to equation
(11). The mean ﬁ(Mo) and standard deviation s(Mo) are calculated for the
set of element residuals {HlRIHi}. We define refinement “intervals" on the
distribution of element residuals by considering the intervals I] = (-,

R + ks), I, = (R + ks,R + 2ks),... = (R + (t-1)ks,»), where k represents

> Iy
the fraction of a standard deviation in each interval. For example, if k =1
the refinement intervals lie 1,2,3,...,t standard deviations above the mean
residual. Now if ”]R]Hi is located in refinement interval j, then element i
is refined to j elements. An estimate of the solution at the newly-intro-
duced nodes is provided by local interpolation in the old basis. On comple-
tion of the refinement of MO(Q) to M1(Q) a solution can be computed on M](Q).
The residual calculations are straightforward and readily implemented
in a computer program. In the algorithm above we begin with an initial coarse

mesh Mo(g) and the algorithm selectively refines the mesh in a systematic

manner to the final mesh Mf(g) with solution u(x;Mf(Q)).

It is not important that the criterion be precise at each mesh iteration.
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Rather, the sequence of meshes generated need only approach an appropriate
final configuration. The means {R} of successive residual distributions
regress towards zero and a natural gradation of the mesh is inherent in the

scheme. These points are demonstrated in the example below.

5. Example: Interior-Layer Problem

Consider the two-point problem

-1 { (]; + afx - ;)Z}U']' = 211 + afx - ;)tan‘]u(x - x) + tan"ai) (16)

in0<x<1withu(0) =u(l) =0. If a is large, say (0(10%)), then the

solution

u(x) = (1 - x)[tan']a(x - D + tan'lni'] (17)

has an interior layer in the neighborhood of x = X.

Numerical results are presented here for a = 100 and x = .36388. 1In
the numerical experiment C0 quartic elements are used, beginning with an
initial mesh MO(Q) of four equal elements. After 8 adaptive refinements, the
finite element mesh consists of 29 elements with a gradual transition from
either side to smaller elements within the layer [7 in (0,.25); 4 in (.25,.325);
9 in (.325,.375); 4 in (.375,.425); 5 in (.425,1.0)]. At this mesh level the
global residual is 7.479. On subsequent refinements many elements are located
in the interval (0.25,0.5), particularly at the interior layer. On the "final"
mesh of 74 elements (43 of them in (.3125,.4375]) the global residual is .812.

1 0

The H norms of the global solution error are 9.895 x 10'3 and 1.411 x

1074

and H
, respectively.

It is instructive to compare global residual and errors for the entire
refinement history. In Figure 1 we present typical results as a log-log plot

0

of global residual ||[R ||| versus H" and H' norms of the solution error. The
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straight line corresponds to a linear regression of these resuits. The resi-
dual and error decrease monotonically on successive refinements and the ex-
perimental values are consistent with earlier theoretical results. Empiri-

- .706
SRyt -70

cally, we have for this example, || ello = 4,703 x 10 and

lelly = 2.212 x 10'3H|R|H]'517 . The H' error norm (slope 0.66) decreases
more slowly than the Ho error norm (slope 0.59). Qualitatively, this re-
sembles the theoretical result for uniform mesh refinement. Data points for
a uniform mesh refinement are also plotted and 1ie on the linear regression
curves in the figure. This confirms the argument that the ability to compute
on an adaptive non-uniform grid using the residual criterion essentially en-
ables one to progress down the straight lines rapidly, reducing the error in

the solution while incurring low storage and computation penalties.

[Figure 1]

6. Nonlinear Problems

When nonlinear problems are considered, automated mesh refinement is
even more appealing, particularly if the solutions are not very smooth or if
layers again occur. WNonlinear analysis is a difficult topic and some of the
points of particular concern in finite element analysis of nonlinear boundary-
value problems are related to non-uniqueness and convergence. Here we wish
to examine the benefits of interweaving iterative solution and adaptive mesh
refinement. The finite element problem on each grid now requires the solution
of a nonlinear system of algebraic equations. Evidently, it should be more
efficient to refine the mesh as soon as the solution iterate on a given mesh
has assumed the approximate form of a converged solution, rather than compute
a fully-converged solution on an inadequate grid prior to refinement. This

implies that one must estimate when to cease iteration and refine the current

i ——
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grid. The relative and absolute changes of element residuals may be used to
determine a stopping criterion.

To explore this strategy, we consider a class of nonlinear problems
arising in heat and mass flow in chemical engineering. The design of effect-
ive catalytic reactors, involving impregnated porous catalyst in the solid
phase immersed in fluid reactants, requires an understanding of the transport
processes in the solid material. Consider the diffusion of heat and mass in
a catalyst pellet where chemical reaction takes place. These problems are
characterized by nonlinear reaction rate terms, often involving exponentials,
and will exhibit multiple solution states and interior-layer or boundary-layer
behavior for some ranges of the reaction rate parameters.

Chemical engineers have developed high-order global approximation methods
to solve these "effectiveness factor" problems very accurately [5]. However,
these global methods prove unsatisfactory for the more difficult problems
where higher derivatives may be discontinuous or boundary and interior layers

occur. To analyze these problems a C]

orthogonal collocation scheme on finite
eiements was devised and applied to a representative "effectiveness factor"
problem with a boundary-layer {6]. Problems such as these are best handled
by discrete element methods, particularly if used in conjunction with an
adaptive refinement algorithm that can grade the mesh appropriately into the
Tayers.

The solid phase consists of a porous base material impregnated with a
catalytic material. Typically, the geometry consists of slabs, cylindrical
rods or spherical pellets. For these simple geometrical cosfigurations the

governing equation simplifies to a nonlinear ordinary differential equation.

In particular, a first order, irreversible, non-isothermal reaction in the

catalyst material may be described by
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—£:T (xa'lu' e f(x,u), 0<x<1 (18)
X

where a = 1,2, or 3 is the dimension and boundary conditions are u'(9) = 0
and, for example, -u'(1) = B(u(1) - 1), parameter B. For f = ozuexp{y(l-l/T)}
T

1+ 88 +B8(1 - 8)u(1) - Bu(x) and reaction rate parameters ¢ = 14.4,

g = 0.02, y = 20.0, § = 50, B = 250, the problem has multiple solutions, the

one of interest possessing a boundary-layer profile of order 10'3 near x = 1.
As the Thiele modulus ¢ increases towards 14.4, successive iteration

on the nonlinear term becomes ineffective. Newton iteration is successful

in determining the boundary-layer solution of practical interest. The Jaco-

bian matrix is easily evaluated as the nonlinear term contributes only to

the diagonal entries and to the last column. The general sequence of compu-

tations is depicted in the flowchart of Figure 2, [2].

[Figure 2]
Applying the refinement algorithm to this problem, we again initiate

solution with a coarse mesh of four elements. Results for three refinement-
iteration experiments are presented in Figure 3. The parameters C], C2 are
the residual tolerances in the stopping condition for successive Newton iter-
ates. The graph demonstrates that a single Newton iteration per mesh is most
efficient for this problem.

Even if the "final" graded mesh is employed directly with the same start-
ing guess, more operations (1.64 x 106) are required than in the adaptive
refinement solution (1.25 x 106). Moreover, in general we do not have suf-
ficient advance knowledge of the solution behavior to affix such a severely

graded mesh.

[Figure 3]
7. Potential Flows

A class of linear and nonlinear flow problems that are of considerable
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practical importance in aerodynamics arise in potential flow theory. We be-
gin with a treatment of mesh refinement applied to incompressible potential
flow. In particular, the local approximation near the leading edge of a 10
percent biconvex airfoil is examined. The class of problems is then enlarged
to admit compressible fl?ws, the nonlinearity entering through the density.
Here a practical problem of current interest is transonic airfoil design.

The objective is to devise techniques and efficient algorithms for the tran-
sonic flow regime. We select this class of flows as representative nonlinear
applications for refinement studies. The theory and strategies are directly
applicable to other nonlinear problems as indicated in the previous sections
and the brief discussions of other flow examples in the concluding sections of

this paper.

8. Incompressible Flow

Conservation of mass together with irrotationality lead to the standard
potential equation for incompressible two-dimensional steady flows, A® = 0

in Q. In this instance, let us examine uniform flow about a 10 percent

biconvex airfoil at zero angle of attack -

The potential function for the fully-infinite exterior flow field may

Tl T

be determined from classical complex variable theory [7],

o(x,y) = . . sinh g cosh b .
5 {(sin a cosh b)® + (cos a sinh b)“}

(19)

where

1 -1 -1
as= ﬁ-(tan §¥T' - tan §¥T°
e % In [{(x'rl)2 £ Y2V ((x-1)2 + yz}li:]

5 camber § .

and = %~cos'1{(1-62)/(1+6)2}




There is a stagnation point at the leading edge and the solution is less
smooth in this neighborhood. Similar problems arise in other applications in-
volving corners or cracks, and local mesh refinement becomes important. In
general, for the Laplacian on a domain Q with corner angle am , the leading

/90 6/a . When

term in the singularity of ¢ at the corner has the form r
a > 1 the corner is not convex and the first derivatives of ¢ are unbounded.
In the present instance, since the flow field is symmetric the corner angle
am is less than w so that the potential and velocity components (first de-
rivatives of ¢ ) are well behaved here. The magnitude of the velocity q

decreases to zero at the stagnation point and then increases to a maximum at

the topmost point of the airfoil. In general, there are fewer than 1/a de-
rivatives at the stagnation point and 1 + 1/a derivatives in a mean-square
sense. For 1/2 < a < 1 there are only two derivatives in a mean-square sense
so the solution &(x,y) is in H2. If the airfoil is at a small angle of attack
the symmetry condition cannot be applied so that 1 < a < 2 and the solution is
only in H‘. In the nonlinear problem to follow, we are no longer dealing with
Hilbert spaces and, moreover, the nature of the singularity and space are not
known.

In the following numerical experiment we examine the merit of refining
locally in a subregion near the stagnation point. The effect of this strategy
for nonlinear analysis of compressible and transonic flows is then considered.

As the flow field is symmetric, it is sufficient to consider a single
quadrant. The complex variable solution is utilized to provided Dirichlet
data in the far field on a remote but finite boundary - the first "window"
in a sense. Our mesh of triangular elements is generated automatically in
the region, as depicted in Figure 4. Here the principles of conformal mapping ; i'

are introduced: we identify a map between a reference "rectangular" domain

and the actual flow region. The mapping is defined by solving the Dirichlet
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problems for the Laplacian, V'x = 0 and V2

y = 0, on the (;,;) reference region.
Finite element techniques are well-suited to this task and the same program
can be used as in the flow computations. The nodal solution vectors of coor-
dinate values {xi}’{yi} at nodes {i} in Q define the nodal locations in Q [8].

This data basis and the generated data set are used repeatedly with very
minor modifications for successively refined subregions. Two further refine-
ments termed Mesh 2 and Mesh 3 are made in each of the computations for this
flow problem. The corresponding subregions are marked in the figure.

[Figure 4]

8.1 Results

A finite element approximation 5(x,y) to the potential field is calculated
using the given mesh of linear elements, Mesh 1. This approximation, the exact
solution, and error at representative points on the airfoil are listed in Table
1, and compared there with corresponding values obtained using Mesh 2.

Contour lines for the relative error e(x,y) = {®(x,y) - ;(x,y)}/@(x,y)}
are graphed in Figure 5. The contour levels range from 0.0 in the far field
to .0144 at approximately the 1/6 chord position on the airfoil. As antici-
pated, the contours are widely separated away from the obstacle and dense in
the near field where the error function rises abruptly towards the airfoil.

The subdomain 92 for Mesh 2 is superimposed on the plot. The root-mean-

square (RMS) error on o for Mesh 1 gives ln(E} _1) = -5.7 for N = 63 node

points. On the subregion Q, the error for this mesh has ln(Eé.]) = -5.2
for N = 25 and for (35,1) = -4.8 for N = 7.

Subregion 92 is next considered and the same mapping approach utilized
to generate Mesh 2. The boundary data is interpolated from the previous finite
element solution on Mesh 1. As part of the investigation, both exact and

prior finite element solutions were used to provide boundary data on 92 .
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The results are consistent with those predicted from the theory earlier

(following equation (15)). The question of error propagation from a boundary
is more interesting and difficult for the nonlinear transonic problem. Dis-
turbances in the supersonic flow will propagate essentially unchanged along
characteristics whereas a maximum principle holds here for the linear problem.
Solution and error values at surface nodes for finite element computations
on Mesh 2 are given in Table 1. Again, the error contour levels have the same
qualitative character as obtained using Mesh 1 on Ql in Figure 6. However,
they are now less densely clustered and range from 0.0 in the "new" far-field
to .007 at approximately the 1/6 chord position on the airfoil. The error is
markedly reduced from that of the previous calculation: the log of the RMS
error on f, with Mesh 2 is ln(fé’z) = -6.2 for N = 63 node points. Follow-
ing the previous procedure, we identify the subregion 93 and compute
ln(Es,z) = -6.0 for N = 17. The actual choice of 93 is more appropriately

suited to the nonlinear problem. As we shall see in the next section the

nonlinear compressibility effects are most important near the leading edge.
The final solution on Mesh 3 with boundary data from Mesh 2 produces

a similar error contour plot. The log of the RMS error on 93 is

1n(§5,3) = -6.35 for N = 63. The error at the stagnation pont is .0015. The

numerical experiments and results are described in greater detail in reference

[91.

[Figures 5-6, Table 1]
9. Compressible and Transonic Flow
The development of the nonlinear compressible flow field about an air-
foil is now examined. Let M, denote the uniform upstream Mach number in
the far field. An appropriate high Reynolds' number Re 1is assumed so that
the flow remains attached well beyond the critical Mach number M. . For M/
slightly greater than MC » local supersonic pockets form on the upper and

Tower surfaces of the airfoil. Supersonic Mach numbers in the pockets are
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near unity and there is no distinguishable steady shock. As M_ = increases ]
further, a steady shock appears at the rear boundary of the supersonic pocket.
This occurs when Mmax is approximately 1.05. If M_ continues to increase,
- the supersonic region grows and the shock moves downstream, increasing in
strength. A pressure jump occurs across the shock, and this eventually at
some M_ will lead to boundary-layer separation.
Finite element computations of compressible subsonic and slightly super-
critical flows are next carried out in conjunction with "windowing" for mesh

refinement. We repeat the sequence of computations on the meshes described

in the previous section for incompressible aerodynamic flows, .For transonic
flows the problem is of mixed type, being elliptic in the subsonic region
and hyperbolic in the supersonic pocket. The mixed flow type, nonlinearity
and shock discontinuities are primary areas of difficulty. We shall consider
only the first two of these in this investigation. In particular, accurate
and efficient nonlinear solutions are sought in the vicinity of the
airfoil. The exact solution is now unknown, and we are unabfé to examine
errors explicitly as we did in the previous linear problems.

The finite element formulation is_first summarized. Using the Bernoulli
relation together with the adiabatic equaﬁion of state in the continuity

equation,we have the transonic full potential equation [9]

2 (y-1 2 2 4

where M_ is the Mach number of the uniform remote flow and Cartesian tensor
notation has been employed.

Equivalently, we may rewrite the eguation in the form

2 2
(@ - ¢%)o._ - 20 0 o R i
e WL (21)
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g -1 2 2 5
where a“ = a_+ h-z—l-(u°° - ¢i - °y) defines the local speed of sound, y is

the gas constant, and U, 1is the uniform remote flow. The associated bound-

ary conditions in the far field are

¢~ Ux as x2 + y2 + ®

and on the airfoil ¢y/¢x = fx where f(x,y) describes the upper surface.
A corresponding variational problem suitable for finite element compu-

tations can be constructed. The functional is

(
=) a5 - o2 /YT g (22)
A ’

Introducing a Tinear finite element approximant into the integrand and
carrying out the usual variational procedures yields the element contribution

to the nonlinear finite element system

oI
_e . Xels 4
o A, {1 + (G - o M<I>)} 2 (23)
where A_ is the element area and M_ = L LT ] LT with ¢ (x,y) = LT¢
e ~8 X=X <Y~y it ~ ~€°

This formulation and other approximate analyses are treated in greater
detail in reference [9]. We consider mesh refinement and numerical solution
of the nonlinear equations g(g) = 0 obtained from equation (23). Element
contributions to the Jacobian matrix in a Newton-Raphson iterative procedure
can be derived directly from (23). That is, g(g(i+]) - ¢(i)) = -g(i)for iterate

i+1, and for each element

_lT Q:{.
Jo = AG(BY™! My + (y-1I6Y" (M), (40) 3 (24)

+ UT)-“ W - ?T"!?”e
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In the following numerical experiments Newton-iterative solution is com-
bined with mesh refinement on successive windows adjacent to the leading edge.
9.1 Results

Nonlinear finite element analysis with the nested meshes of Figure 4 is
now examined for compressible flow about the biconvex airfoil. Solutions
are computed at a subcritical incident Mach number M_ = 0.6 and at the slight-
ly supercritical Mach number M_ = 0.795. Isomach contours are graphed in
Figure 7 for the subcritical flow (M_ = 0.6) on Q; using Mesh 1.

[Figure 7]

In the numerical experiments we combine refinement of subregions with
Newton iteration to a variable tolerance (error level). For example, the
finite element solution on Mesh 1 is computed to a tolerance T = 10'2 in
the Newton iteration. This requires 6 Newton iterates from the incompress-
ible starting solution. The solution is then sought on Qz with Mesh 2 and

-3

to a tolerance of T = 10 ~ in successive Newton iterates. Finally, using

the solution from Mesh 2, iteration proceeds on subdomain Qq and Mesh 3 at
tolerance T = 107%.
The behavior of the error in successive Newton iterates is analogous to
that of the error function in the linear potential problems treated earlier.
In Figure 8 contours of solution iterate error on Mesh 1 are graphed. Con-
tour values range from -.006 to zero. The log of the RMS iterate error is
-6.4 for N = 63. Continuing to Mesh 2 on Q, at tolerance 10'3 the error

-4 4

contours range from -2.6 x 107" to 1.4 x 10~

and ln(Eé) = -14.4 after 2

iterations. Values of & and iterate error |e| at points on the airfoil

T T Y B 7 - S e O o Orn =t e, s s - PR 3 25770 1 |11 1 =

surface are given in Table 2. Finally, on Q with Mesh 3 and a starting

iterate interpolated from the current iterate on Mesh 2, at 1 = 10'4 the con-

tours range from -8.1 x 1077 to 5.4 x 1077 and are shown in Figure 9. The
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log of the RMS iterate error is -14.0 after 3 Newton iterations.

The important point is that the absolute errors in each solution iterate
are near zero away from the airfoil and increase to a maximum near the leading
edge. Again, we are exploiting this feature of the error behavior, but in
this instance as applied to iteration errors rather than the solution error.
Rapid convergence in the far field allows us to reduce the domain and use
the previous “coarse mesh solution" to interpolate an excellent starting
guess on the new, finer mesh in the near field.

We do not mean to infer that the actual error has the same behavior.

In fact, we know that the iterate error at the boundary is no better than
that of the previous mesh. Yet, it may be argued that, relative to this

error, the errors in the interior of following subregions are being reduced

to zero. The final result is a solution in the neighborhood of interest,
the near field of the airfoil, and on a fine mesh that is of satisfactory ?
accuracy. Furthermore, this nonlinear solution has been obtained very ef-
ficiently. . !
[Figures 8-9, Table 2]
As we remarked earlier, the strategy proves useful if the successive ) |
boundaries remain in the subsonic flow. The refinement approach is also
successful for supercritical flows. At M_ = .8 there is a small supersonic
pocket adjacent to the topmost part of the airfoil. On Mesh 1 we find a
single element of the coarse mesh is supersonic. Progressing to Mesh 2,
there are several smaller elements that are supersonic and we obtain much
better resolution of the sonic line and mixed flow.
To achieve convergence of the Newton iteration at supercritical Mach
numbers, we require an accurate starting iterate on an appropriate mesh. - *

In the present case, for mildly transonic flows accurate computations of




the flow field near the leading edge can be obtained as follows: (1) Begin

with an initial mesh on the largest domain and compute a potential solution;

(2) Using the same mesh work up in Mach number and with few Newton iterates

until the dominant changes in the solution are localized near the airfoil;

(3) Introduce the new mesh, interpolating nodal solutions from the most re-

cently calculated vector on the previous mesh; (4) Continue iteration at

this Mach number on the new subregion and on following subregions.

If accurate approximations at the higher Mach numbers cannot be attained

on the initial mesh then errors at newly-introduced boundaries may lead to

difficulties. Alternative iterative methods such as point relaxation schemes !

may be applied to make the basic system solution more robust. These are cur-

rently being investigated [8].

10. Other Problems and Refinement Techniques

In this final section a brief overview of other techniques and

applications is presented. Within this more general context one can

examine competitive refinement, enrichment, mesh equidistribution and

subregion refinement strategies and the classes of applications to which

they are best suited. Directions of continuing research in refinement

theory and technique are described. In particular, the implications

of these techniques to time-dependent problems and some related pro-

blems peculiar to refinement are noteworthy.

10.1. Refinement Techniques
Mesh refinement in one dimension is relatively straightforward.

The techniques described earlier for mesh enrichment guided by the
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residual are qualita;i;eiy similar to utilizing the truncation error in
finite difference formulations. An alternative apprcach, termed '"equi-
distribution" in the finite difference literature, cons ers a mesh of
grid points and redistributes the mesh according to an error criterion
such as the residuals developed here. A simple strategy is '"doubling
and halving" whereby the mesh size h is doubled in regions where the
solution is better behaved and existing elements halved in elements
where refinement is desired. Other "monitor" functions such as arc
length and measured of the local rate of change of solution have been
applied, particularly in finite difference and finite element colloca-
tion computations. A survey and bibliography is forthcoming [11].

One may also refine by increasing the order of the element, a relatively
easy process in one dimension but obviously sensitive to the quality of

the initial mesh.

Refinement in two or three dimensions is more difficult. Elements
meet along edges and surfaces respectively and refinement will often
introduce new nodes on the boundary of the original element. One or
two internal refinements that do not introduce any new nodes on the
old boundary might be acceptable. Engineering experience has shown
that idealizations with slender elements may often yield poor results.
Mathematically, we require that the finite element basis should be
untform. This amounts to a constraint on the element geometry. If the
finite element approximation U(x,y) coincides with the exact solution
at the nodes of a triangular element, then

Kd
sin 6
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where K 1is a bound on [82U/3xiale , d 1is the diameter of the ele-

ment and € 1is the largest angle of the triangle. The need for caution

is evident from the dependence of the bound on angle © . Also, slender
triangles may lead to deterioration of the numerical condition of the
algebraic system.

The natural refinement of a three-node triangle is to introduce new
i nodes at the side mid-points and subdivide the triangle into four con-
3 gruent subtriangles. Additional midside nodes are shared with adjacent
?; elements. Across an interface between refined and unrefined regiomns

the approximation must be constrained to ensure continuity. The

b constraint can be embedded directly in the basis, and the approach has
been used successfully for refinement towards a singular point F12 ]
.i Alternatively, Lagrange multipliers may be introduced to satisfy the
4 continuity requirement on the interface S between refined and unre-
1

1 fined regions. For potential flows the variational problem becomes:

make stationary the functional

T o o2
T Lz 20 + 0)de + L A(x,y) (8, - ©_)ds (26)

where &, and ¢_ represent the approximations in the refined and un- %

refined subregions adjacent to S . The argument can be applied using
penalty constraints rather than multipliers in the usual manner and

3 ‘ utilised in nonlinear problems such as the compressible flow examples

considered earlier. 1In fact, for the transonic small disturbance

equation [9] the modified functional is very similar to that above,
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1.
+ —2' ¢y )dQ
+ I A(x,y)(¢+ ~ <I>_)ds (27)
S

4 An approximate analysis requires finite element expansions for both
d(x,y) in 9 and A(x,y) on S slightly increasing the size of
i the algebraic problem. Details of the formulation and implementation
‘ are described elsewhere [13].

For many applications, excluding solutions possessing layers and

singularities, only moderate refinement is required. In this event

the additional complexity arising from the imposed constraint on

exposed nodes may be avoided by alternative refinements. One scheme, ?
that has been utilized in an algorithm for linear and nonlinar problems,

is to bisect the largest angle of a triangle and continue by subdividing |

the adjacent element on the newly divided side [14]. The largest angle
of the second triangle may not be bisected so that some slender ele-
ments may develop. Yet for many applications it is unlikely that

there would be extensive bisections of a small angle early in the

refinement process. 1In [14] this approach is applied to Au = 1/4 u3/r3
in a triangular domain with 3u/dn + uh = r2 = 0 on the slant side and
u=/r (the solution) on the remainder of the boundary. Refinement

proceeds from an initial triangulation of 3 elements to 60 elements

4 .

after 7 steps. The maximum error is 3.6 x 10
The approach of refining nested subregions that is used in
the potential flow experiments of earlier sections has been in use

at least since the mid-sixties.in finite difference computations and




probably was practised much earlier than this. In industrial research

applications it has been in use in finite element computations since the
late sixties and, applications to fluid mechanics problems have been
made recently [15,16]. In [15] the method is applied to viscous flow
through a two-dimensional diverging channel. The Reynolds number of

the flow is increased until primary vortices appear. In this particular
application the separation region in the channel is studied in detail by
re-meshing on the pertinent subregion. Oscillatory behavior of the solu-
tion at moderate Reynolds numbers (around 37.5) necessitate the use of
under-relaxation methods. A similar point arises in the analysis of
supercritical compressible flows, but the behavior of the iteration
improves on successive nested meshes. Elsewhere [16] the incompressible
viscous flow problem has been studied numerically using a primitive
variable formulation with nested refined subregions. It is observed
from experiments that the procedure again is suitable for detailed
examination of separation with closed recirculation regions. As in

the case of the supersonic pocket studies, details of the flow near the
point of interest are not evident on the coarse mesh solution but are
resolved on subregion refinement. For a rectangular subregion the

velocity boundary data may be interpolated on three sides from the pre-

vious coarse-mesh solution. On the remaining side numerical experiments
indicate that the pressure distribution is required to ensure that mass
is conserved in the subregion. If velocity is also specified on the
fourth-side numerical instabilities arise as the incompressibility
condition is satisfied only in an integral sense on the subregion.

Detailed numerical results are obtained for corner recirculation in a

driven cavity flow at Reynolds number 100.




Recent theoretical work in the form of the residual analysis [2, 16]
is establishing a theoretical foundation for existing and future refine-
ment strategies in finite element computations and there are many
challenging problems in all areas of analysis, algorithm and implementation.
These difficulties notwithstanding, in closing, we raise the issue of time-
dependent analysis and adaptive refinement. Equidistribution techniques
such as the "doubling and halving" strategy are being applied to wave
propagation problems. Consider a propagating step-front, a model
problem frequently studied of convection-diffusion processes. A fine
mesh is desired in the vicinity of the propagating front. A strategy
currently being explored.utilizes a residual analysis within a semi-
discrete finite element formulation, enriching the spatial mesh at times

and locations determined by the error criterionm.

11. Concluding Remarks

An eventual goal might be to formulate and implement a theory for
adaptive refinement whereby the analyst may specify conditions such as de-
sired global or local accuracy, processing cost, or storage limitations, to
determine an appropriate mesh. Realistically, when one deals with general
linear and nonlinear problems this ideal can not be attained - the degree
of difficulty of the problems and their diversity is too severe. As we have
demonstrated, substantial progress can be made if one restricts the strate-
gies to specific classes of problems - here certain linear and nonlinear
flow and transport problems.

Even if the more ambitious general goal is ignored, one can apply re-
finement analysis and algorithms to great advantage. This is particularly true
if the problems considered have layers or singularities, especially if their
location is not well known in advance. In treating nonlinear problems, much

of the underlying computation required to generate an accurate solution
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iterate and also an appropriate mesh, can be carried out economically on

coarse meshes. The nonlinear iteration and adaptive mesh refinement can

thus be interwoven to produce efficient algorithms.
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